Jets in PHENIX

Dennis V. Perepelitsa
Columbia University
for the PHENIX Collaboration

High- $p_{\rm T}$ Probes of High Density QCD at the LHC Quark Matter 2011 Satellite Meeting École Polytechnique, Palaiseau, France

30 May 2011

Jets in PHENIX (1/40)

D.V. Perepelitsa

Introduction

PHENIX Detector

Basic Cuts

Gaussian Filte

eavy Ion Jets

Underlying Event Fake Jets Energy Scale

Results

pp d+Au

Outlook

VTX

Acknowledgements

Why Jets at PHENIX?

- ► Can measure jet modification at:
 - different collision energies and system sizes.
 - ▶ lower energies due to softer underlying event.
 - different x and Q^2 (different mixture of quark and gluon jets).
- Cold nuclear matter effects are important!
 - ▶ Need p+A (d+Au at RHIC) baselines ASAP.
 - ▶ No p+Pb LHC run until $\gtrsim 2012$?

 \Rightarrow Insight into energy loss mechanisms.

Jets in PHENIX (2/40)

D.V. Perepelitsa

Introduction

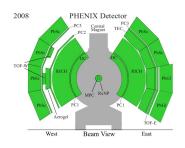
PHENIX Detector

Algorithms

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results


pp d+Au Cu+Cu

> utlook /TX

Acknowledgements

Backun

The PHENIX detector

- ► Run 5 p+p and Cu+Cu @ $\sqrt{s_{NN}}$ = 200 GeV.
- ► Run 8 p+p and d+Au @ $\sqrt{s_{NN}}$ = 200 GeV.
- ► (Run 11 with the VTX: took p+p @ \sqrt{s} = 500 GeV and taking Au+Au @ $\sqrt{s_{NN}}$ = 20) GeV now!)

Jets in PHENIX (3/40)

D.V. Perepelitsa

Introduction

PHENIX Detector

lgorithms

Gaussian Filter

Underlying Event
Fake Jets
Energy Scale
Misc.

Results

pp d+Au Cu+Cu

Outlook VTX sPHENIX

Acknowledgements

The PHENIX detector

Advantages:

- High DAQ rate (> 7kHz under good conditions) means we can take a large Minimum Bias sample and still trigger.
- ▶ Good electromagnetic calorimetry ($\sigma_E \sim 3\%/\sqrt{E}$).

Disadvantages:

- ▶ $|\eta|$ < .35. Weak acceptance for (low $p_{\rm T}$) dijets.
- Lack of hadronic calorimetry (miss neutral hadronic energy in jet E_T).
- Tracking efficiency falls at high p_T from conversions and ghosts.

Jets in PHENIX (4/40)

D.V. Perepelitsa

Introduction

PHENIX Detector

Algorithms

Gaussian Filte

Heavy Ion Jets Underlying Event Fake Jets Energy Scale

Results

pp d+Au Cu+Cu

Outlook

sPHENIX

Acknowledgements

Basic Cuts

Perform reconstruction at the particle level first.

- Goal: balance acceptance (needed for jet reconstruction) vs. quality considerations.
 - PHENIX Drift Chamber, Pad Chambers: select good charged hadrons and electrons.
 - ▶ PHENIX Electromagnetic Calorimeter: select good photons.
 - ▶ To avoid double-counting, DC acts as a veto on clusters.
- ▶ Use EMC clusters and DC tracks as (massless) inputs to reconstruction. Require p_T , $E_T > 400$ MeV/c, respectively.

Jets in PHENIX (5/40)

D.V. Perepelitsa

Introduction

PHFNIX Detect

Basic Cuts

gorithms

Gaussian Filt

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results

pp d+Au Cu+Cu

outlook VTX

Acknowledgements

let Reconstruction

"A jet is not a physical quantity; it is a legal contract between theorists and experimentalists"

M Tannenbaum

- An algorithm is a stupid thing that takes in four-vectors and spits out different four-vectors.
- Have to understand the output and context of reconstruction algorithms.
- ▶ Want observables (R_{AA} , di-jet $\Delta \phi$, quenching) to be insensitive to choice of algorithm.

lets in PHFNIX (6/40)

D.V. Perepelitsa

Algorithms

Reconstruction Algorithms

Is it a good algorithm?

Is the algorithm stable against the addition of small particles at odd angles (infrared safe) or splitting (collinear safe)?

Is it useful in my detector?

- Does the algorithm behave well around holes in the acceptance?
- Is it sensitive to the underlying event?
- Does the algorithm reconstruct background fluctuations at jets?

Does it encode meaningful physics?

- Does the algorithm recover most of the fragmenting parton's energy?
- Does the algorithm reconstruct the fragmenting parton's direction?

Jets in PHENIX (7/40)

D.V. Perepelitsa

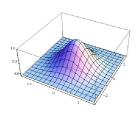
Introduction

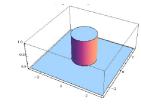
PHENIX Detector

Algorithms

Gaussian Filte

Underlying Event
Fake Jets
Energy Scale


Results


pp d+Au Cu+Cu

> utlook /TX

Acknowledgements

Gaussian Filter

 Seedless, infrared and collinear safe algorithm with angular weighting (nucl-ex/0806.1499)

$$ho_{\mathrm{T}}^{\mathrm{jet}} \equiv \max \left\{ \int \int d\eta' d\phi' p_{\mathrm{T}} \left(\eta', \phi'
ight) \mathrm{e}^{-(\Delta \eta^2 + \Delta \phi^2)/2\sigma^2}
ight\}$$

- Shape of the filter:
 - Optimizes the signal-to-background by focusing on the core of the jet
 - Stabilizes the jet axis in the presence of background
- ► *Additive*: good against collective background, holes in acceptance.

Jets in PHENIX (8/40)

D.V. Perepelitsa

Introduction

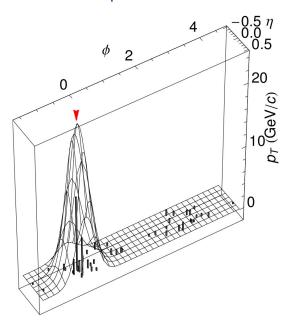
PHENIX Detecto

Algorithms

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results


pp d+Au Cu+Cu

outlook VTX

sPHENIX

Acknowledgements

Gaussian Filter example

Jets in PHENIX (9/40)

D.V. Perepelitsa

Gaussian Filter

sPHENIX

Reconstruction Challenges in a Heavy Ion Environment

▶ Jet reconstruction algorithms are originally a HEP idea.

► The fluctuating, large combinatorial background in heavy ion collisions adds unique challenges.

New techniques are needed. Here are the some of the ones we use at PHENIX. Jets in PHENIX (10/40)

D.V. Perepelitsa

Introduction

Basic Cuts

Dasic Cuts

Gaussian Filte

Heavy Ion Jets

Inderlying Event

Fake Jets Energy Scale Misc

Results

pp d+Au

Cu+Cı

Outlook VTX

Acknowledgements

Rackup

Presence of the Underlying Event

How does the underlying event influence jet reconstruction? (And which effects can we correct?)

- ▶ Jittering of the jet axis p^{μ} (important for di-jet measurements).
 - ► Low-p_T effect.
- ► Split-jet
 - ▶ Low-p_T and large cone size effect.
- \triangleright $p_{\rm T}$ feeding (important for yields, suppression, etc.):
 - Event-averaged background subtraction
 - ► (PHENIX Cu+Cu: hep-ph/0802.1188, but not appropriate for d+Au).
 - ▶ Unfolding from embedding (PHENIX d+Au).
 - ▶ Background subtraction on event-by-event basis:
 - LHC Pb-Pb iterative subtraction, O. Kodolova et al., EPJC (2007) 117,
 - ► Cacciari/Salam $A\rho \pm \sigma \sqrt{A} L$ method, hep-ph/0707.1378, hep-ph/0802.1188.

Jets in PHENIX (11/40)

D.V. Perepelitsa

ntroduction

PHENIX Det

Basic Cuts

Algorithms

Jaussian Fliter

Underlying Event

ke Jets ergy Scale

seulte

pp d+Au

> utlook TX

Acknowledgements

Rackup

Fake Jet Identification and Rejection

- ► Fluctuations of the underlying event ⇒ can be reconstructed as low-p_T "jet" by your algorithm!
- Solutions:
 - ▶ Pick a p_T cutoff where the fake rate is negligible (e.g. ATLAS does this at 100 GeV for R=0.4 anti-k_T jets).
 - ▶ Different ways to do this: compare to p+p, look at dijets, etc.
 - Subtract off fake jet yield (very difficult to do properly).
 - ▶ Look at each jet and cut out the ones that look "fake" (e.g. don't have energy distributed in a way that looks like a fragmenting parton). Discriminants:
 - $(E_T)_{max}/(E_T)_{avg}$ in jet (e.g. ATLAS calorimeter jets)
 - \triangleright Σj_T (nucl-ex/0810.1219)
 - Cacciari/Salam (Cacciari & Salam, Phys. Lett. B 659, 119, 2008)
 - ▶ In PHENIX: $g_{\sigma_{dis}}$ (nucl-ex/0907.4725)

Jets in PHENIX (12/40)

D.V. Perepelitsa

ntroduction

PHENIX Detecto
Basic Cuts

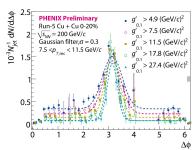
lgorithms

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

esults

pp d+Au Cu+Cu


Outlook VTX sPHENIX

Acknowledgements

Backun

$$g_{\sigma_{\mathrm{dis}}}(\eta,\phi) \equiv \sum_{i \in \mathrm{fragment}} (p_T)_i^2 \exp\left(-(\Delta \eta^2 + \Delta \phi^2)/2\sigma_{\mathrm{dis}}^2\right)$$

▶ Choose $\sigma_{dis} < \sigma_{rec}$.

- Data-driven approach to determine where to cut.
- \triangleright Cut efficiency saturates quickly with p_T .

Jets in PHENIX (13/40)

D.V. Perepelitsa

Introduction

PHENIX Dete

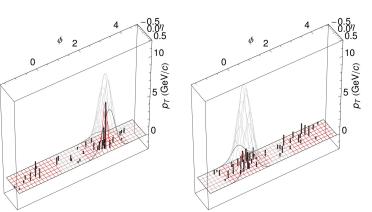
Rasic Cuts

Algorithms

leavy Ion Jets

Underlying Event

Misc.


Results

d+Au Cu+Cu

> Outlook VTX sPHENIX

Acknowledgement

$g_{\sigma_{dis}}$ method example

9.6 GeV/c jet passing fake rejection Rejected 10.8 GeV/c background fluctuation

Jets in PHENIX (14/40)

D.V. Perepelitsa

Introductio

DENIY De

Basic Cuts

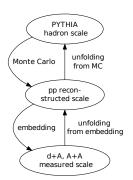
-digoritimis

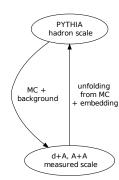
Heavy Ion Jets

Underlying Event Fake Jets

Danula

pp d+Au


Cu+Cu


Outlook VTX sPHENIX

Acknowledgemen

Rackup

Energy Scales in Reconstruction

Jets in PHENIX (15/40)

D.V. Perepelitsa

Introduction

DUENILY Data

Basic Cuts

Algorithms

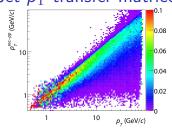
Gaussian Filte

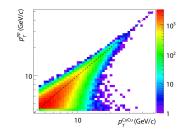
Heavy Ion Jets
Underlying Event

Fake Jets Energy Scale

Results

рр


d+Au Cu+Cu


> Outlook VTX

Acknowledgements

- ▶ We talk about jet reconstruction at a given *energy scale*.
- ► Would like to make a "detector free" measurement and correct for all detector effects.

Jet $p_{\rm T}$ transfer matrices

 $truth \rightarrow pp transfer matrix$ $T_{\text{truth}}^{\text{pp-rec}}$ (MC)

 $pp \rightarrow 0-20\%$ Cu+Cu transfer matrix $T_{\rm pp-rec}^{\rm CuCu-rec}$ (embedding)

- Smearing of a power law spectrum:
 - \triangleright small fluctuations from low to high p_T get exponentially magnified
 - ▶ in PHENIX, dominated by missing n, K_I^0 energy
- Can perform a bin-by-bin ("0th order unfolding") by just looking at the spectra before and after.
 - Dangerous: assumes you know the shape of your input spectrum (but most analyses do it this way)

lets in PHFNIX (16/40)

D.V. Perepelitsa

Energy Scale

Jet spectrum unfolding

▶ Need to invert the spectrum smearing:

$$rac{dN}{dp_T^{
m rec}} = \int dp_T^{
m truth} rac{dN}{dp_T^{
m truth}} T_{
m truth}^{
m rec}$$

▶ For near-diagonal matrices (e.g. $p_T^{dAu} \rightarrow p_T^{pp-rec}$ unfolding), can use a Neumann series:

$$(I_{n\times n}-T)^{-1}=\sum_{n=0}^{+\infty}T^n$$

- Best (and hardest solution) is to use singular value decomposition (SVD) methods with some regularization (hep-ph/9509307)
 - implemented in the GURU software package

lets in PHFNIX (17/40)

D.V. Perepelitsa

Energy Scale

Triggering, Tracking, Acceptance, etc.

... many other issues!

- PHENIX Electromagnetic/RICH trigger (ERT):
 - ▶ Fires on electromagnetic showers with ≥ 1.6-2 GeV.
 - Use event trigger bits in large minimum bias sample to construct a (centrality-dependent) efficiency.
- ▶ Fake high- p_T tracks from drift chamber conversions:
 - Require 3+ constituents in jet.
 - Cut out highly charged jets and those dominated by a single high- $p_{\rm T}$ track.

Fiducial effects:

- Require jets to be within $\Delta \eta$, $\Delta \phi < 0.05$ within the edge of acceptance.
- Evaluate detector edge effects on reconstruction.

lets in PHFNIX (18/40)

D.V. Perepelitsa

Misc

Overview of PHENIX Jet Results

- ▶ p+p @ 200 GeV (PHENIX Run 5):
 - ▶ Jet yields, fragmentation function *D*(*z*) for charged and neutrals
 - Demonstrate Gaussian filter reconstruction capability.
- ▶ d+Au @ 200 GeV (PHENIX Run 8):
 - ▶ Jet yields, R_{CP} , di-jet $\Delta \phi$ and p_{out} distributions
 - ightharpoonup Measure/constrain cold nuclear matter effects on suppression and $k_{
 m T}$ broadening
- ► Cu+Cu @ 200 GeV (PHENIX Run 5):
 - Jet yields, R_{AA} , di-jet $\Delta \phi$ distributions
 - Measure high-p_T parton suppression in hot nuclear matter

Jets in PHENIX (19/40)

D.V. Perepelitsa

ntroduction

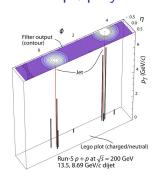
PHENIX Detecto

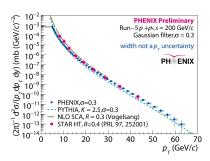
Algorithms

Gaussian Filte

Underlying Event Fake Jets Energy Scale

Results


pp d+Au Cu+Cu


> Outlook VTX

Acknowledgements

Backun

PHENIX p+p: yields

- ▶ Unfolded back to the ideal hadron stage p_T^{truth} .
- ▶ PHENIX can perform reconstruction out past $p_{\rm T}\sim 60$ GeV/c.
- Residual difference from theory could be related to jet definitions.

Jets in PHENIX (20/40)

D.V. Perepelitsa

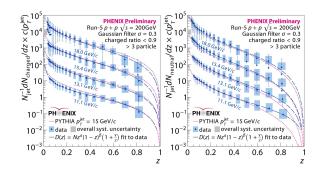
Introduction

HENIX Det

Basic Cuts

Caussian Eilte

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale


Results

pp d+Au Cu+Cu

> utlook TX

Acknowledgements

PHENIX p+p: fragmentation function

- $ightharpoonup z =
 ho_{||}^{
 m particle}/
 ho^{
 m jet}$ (Data offset by powers of 10)
- n-Dimensional generalization to GURU used to unfold

$$\left(p_{||}^{\text{particle,rec}}, p_{\text{T}}^{\text{jet,rec}} \right) \rightarrow \left(p_{||}^{\text{particle,truth}}, p_{\text{T}}^{\text{jet,truth}} \right)$$

Jets in PHENIX (21/40)

D.V. Perepelitsa

Introductio

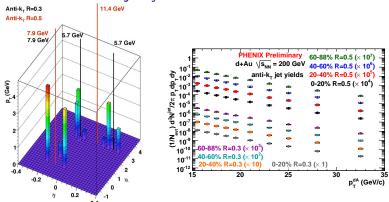
PHENIX De

Basic Cuts

Algorithms

Gaussian Filt

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale


Results

pp d+Au

Outlook VTX sPHENIX

Acknowledgements

PHENIX d+Au: jet yields

- ► Cold nuclear matter effects are an important baseline in understanding QGP energy loss / jet quenching.
- ► Testing the usability of the anti-k_T algorithm (hep-ph/0802.1189) at PHENIX. Two cone sizes:
 - control for jet area.
 - control for effect of underlying event.

Jets in PHENIX (22/40)

D.V. Perepelitsa

Introduction

PHENIX Det

Algorithms

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale
Misc

Results

d+Au Cu+Cu

> utlook /TX

Acknowledgements

PHENIX d+Au: 2007 π^0 results

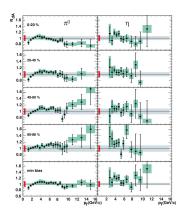


FIG. 2. Nuclear modification factor $R_{\rm th}$ for π^0 and η in different centrality selections and min. bias data. The bands around the data points show systematic errors which can vary with p_T . The shaded bands around unity indicate the (T_{AB}) uncertainty and the small bands on the left side of the data points indicate the normalization uncertainty due to the p+p reference.

Jets in PHENIX (23/40)

D.V. Perepelitsa

Introduction

PHENIX Detect

Basic Cuts

Algoriu

Gaussian Filte

Heavy Ion Jet Underlying Ever

Fake Jets Energy Scale Misc.

Results

d+Au

Dutlook

Outlook

sPHENIX

Acknowledgements

PHENIX d+Au: 2007 π^0 results

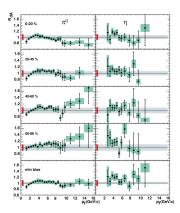
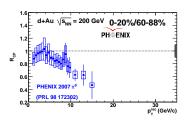
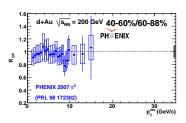




FIG. 2: Nuclear modification factor R_{0A} for π^0 and η in different centrality selections and min. bias data. The bands around the data points show systematic errors which can vary with p_T . The shaded bands around unity indicate the (T_{AB}) uncertainty and the small bands on the left side of the data points indicate the normalization uncertainty due to the p+p reference.

Jets in PHENIX (24/40)

D.V. Perepelitsa

Introduction

HENIX Detector

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale
Misc

Results

pp d+Au Cu+Cu

Outlook VTX

Acknowledgements

Backun

PHENIX d+Au: jet $R_{\rm CP}$

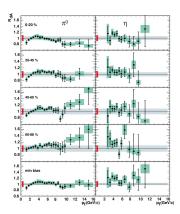
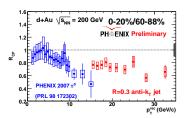
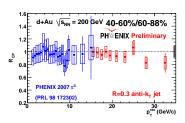




FIG. 2: Nuclear modification factor R_{0A} for π^0 and η in different centrality selections and min. bias data. The bands around the data points show systematic errors which can vary with p_T . The shaded bands around unity indicate the (T_{AB}) uncertainty and the small bands on the left side of the data points indicate the normalization uncertainty due to the p+p reference.

Jets in PHENIX (25/40)

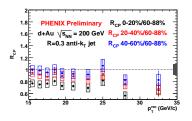
D.V. Perepelitsa

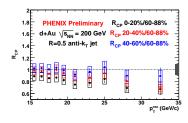
Introductio

HENIX Detector

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale


Results


pp d+Au Cu+Cu

Outlook VTX sPHENIX

Acknowledgements

PHENIX d+Au: jet R_{CP}

- ▶ At the pp reconstructed scale.
- ▶ Caveat: these are $R_{\rm CP}$, not $R_{\rm dAu}$.
- ► Evidence of cold nuclear matter effect:
 - centrality-dependent nPDF modification (EMC region)?
 - ► E-loss?
- ▶ Need $R_{\rm dAu}$ and lower $p_{\rm T}$ reach (and higher $p_{\rm T}$ π^0 's) to tell the whole story . . . stay tuned.

Jets in PHENIX (26/40)

D.V. Perepelitsa

Introduction

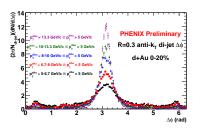
DUENILY D

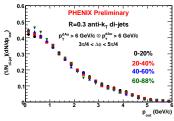
Basic Cuts

Algorithms

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results


d+Au Cu+Cu


> outlook VTX

SPHENIX

Acknowledgement

PHENIX d+Au: di-jet p_{out}

Search for broadening by examining

$$p_{\mathrm{out}} (= \langle k_T \rangle) \equiv (p_{\mathrm{T}})_{\mathrm{low}} \cdot \sin \Delta \phi$$

- With kinematic and away-side cuts to remove combinatorial contribution, little room for centrality-dependent broadening.
- ▶ \Rightarrow Investigate possible j_T broadening in constituents?

Jets in PHENIX (27/40)

D.V. Perepelitsa

Introduction

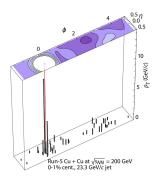
LIENUX D

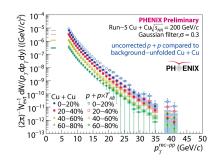
Basic Cuts

Algorithms

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale


Results

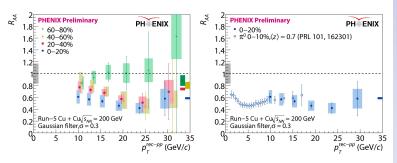

pp d+Au Cu+Cu

> outlook /TX

Acknowledgements

PHENIX Cu+Cu: yields

- Direct jet reconstruction in heavy ion collisions at RHIC.
- Plotted at the pp reconstructed scale.
- ▶ Not unfolded back to p_T^{truth} . . . yet.


lets in PHFNIX (28/40)

D.V. Perepelitsa

Cu+Cu

sPHENIX

PHENIX Cu+Cu: R_{AA}

- ► At the pp reconstructed scale.
- ightharpoonup Centrality-dependent suppression over a wide p_{T} range.
- Extends and agrees with previous single leading hadron measurement (π^0) .
- ▶ ⇒ Out of cone radiation or otherwise modified jet.

Jets in PHENIX (29/40)

D.V. Perepelitsa

Introduction

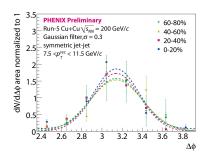
LIENUX D

Basic Cuts

Gaussian Filter

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results


pp d+Au Cu+Cu

Outlook VTX sPHENIX

Acknowledgements

. tettiowieugeine

PHENIX Cu+Cu: di-jet $\Delta \phi$

Centrality	$\Delta \varphi \approx \pi \text{ width } \sigma$
0–20%	0.223 ± 0.017
20-40%	0.231 ± 0.016
40-60%	0.260 ± 0.059
60-80%	0.253 ± 0.055

No centrality-dependent broadening observed within sensitivity.

lets in PHENIX (30/40)

D.V. Perepelitsa

Cu+Cu

sPHENIX

Outlook

Developing jet reconstruction techniques and making PHENIX measurements!

- ► Gaussian filter gives reliable p+p results (and can recover the fragmentation function).
- ▶ Measuring di-jet broadening and high- p_T suppression in cold nuclear matter . . .
 - ... and in hot nuclear matter!

... but there is much more to do.

Stay tuned!

Jets in PHENIX (31/40)

D.V. Perepelitsa

Introduction

Basic Cuts

Judic Cuts

Gaussian Filte

Heavy Ion Jets Underlying Event Fake Jets

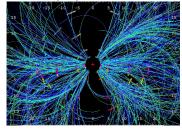
Energy Scale Misc.

Results

pp d+Au

Jutlook

Outlook


sPHENIX

Acknowledgement

Silicon Vertex Detector

Successfully commissioned in 2011 p+p.

Taking data in Au+Au *right* now!

- Secondary vertex identification can tag heavy flavor jets.
- Improved tracking to reject background.
- ▶ Jet reconstruction with standalone tracking.

Jets in PHENIX (32/40)

D.V. Perepelitsa

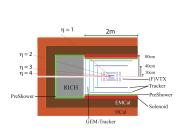
Introduction

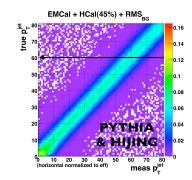
HENIX Dete

lgorithms

Gaussian Filter

Underlying Event
Fake Jets
Energy Scale


Results


d+Au Cu+Cu

VTX «PHENIX

Acknowledgements

Potential Future Upgrades: sPHENIX

- Maintain and capitalize on PHENIX high rate capability (record lots of heavy ion data without rare triggers).
- Large, uniform acceptance. Hadronic calorimetry at mid-rapidity (first at RHIC).
- ▶ Resolution and efficiency out to $p_{\rm T} \ge 60$ GeV/c.

Jets in PHENIX (33/40)

D.V. Perepelitsa

Introduction

PHENIX Detecto

Algorithms

Gaussian Filter

Underlying Event
Fake Jets
Energy Scale

Results

pp d+Au Cu+Cu

Outlook VTX sPHENIX

. Acknowledgements

Acknowledgements

Many thanks to...

▶ Brian Cole, Nathan Grau, Yue Shi Lai

► PHENIX Collaboration

► HPHD2011 organizers

Jets in PHENIX (34/40)

D.V. Perepelitsa

Introduction

PHENIX Detector

Basic Cuts

Algorithms

Gaussian Filte

Heavy Ion Je

Underlying Event Fake Jets Energy Scale

Reculte

pp d+Au

Cu+Cu

utlook TX PHENIX

Acknowledgements

BACKUP

Jets in PHENIX (35/40)

D.V. Perepelitsa

Introduction

PHENIX Detector

Basic Cuts

Caussian Eilt

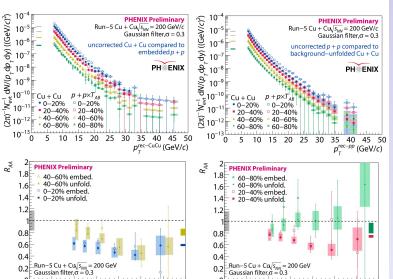
Gaussian Filte

Heavy Ion Jet

Fake Jets
Energy Scale

Danula

pp d+Au


Cu+Cu

utlook

VTX sPHENIX

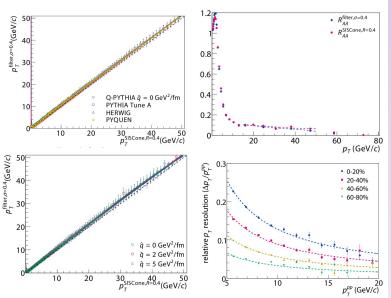
Acknowledgements

PHENIX Cu+Cu: yields at two energy scales

35

10

20


30 35

10 15 20 25 Jets in PHENIX (36/40)

D.V. Perepelitsa

sPHENIX

Misc. Gaussian filter backup slides

Jets in PHENIX (37/40)

D.V. Perepelitsa

Introduction

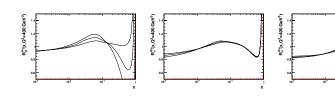
HENIX Detect

Basic Cuts

Gaussian Filte

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results


pp d+Au

utlook

VTX sPHENIX

Acknowledgements

EPS09 nPDFs for high-x d+Au cold nuclear matter effects

• $Q^2 \sim 400 \text{ GeV}^2$, $x \sim .2 - .4$.

Jets in PHENIX (38/40)

D.V. Perepelitsa

Introduction

Basic Cuts

Algorithms

Gaussian Filte

Heavy Ion Jets
Underlying Event
Fake Jets
Energy Scale

Results

pp d+Au Cu+Cu

Cu+Cu

Outlook VTX sPHENIX

Acknowledgements

Comparison with STAR d+Au

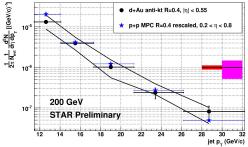


Figure 5. Jet p_T spectrum from d+An collisions compared to scaled p+p spectrum [2]. Red box indicates uncertainty of $\langle N_{\rm bin} \rangle$, black lines indicate JES uncertainty in d+Au and the magenta box shows the total systematic uncertainty of p+p measurement (including JES uncertainty).

nucl-ex/1008.4875

Jets in PHENIX (39/40)

D.V. Perepelitsa

Introductio

Rasic Cuts

Dubic Cutb

.

Heavy Ion Jets

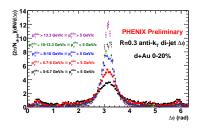
Underlying Event Fake Jets Energy Scale

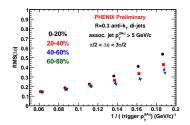
Results

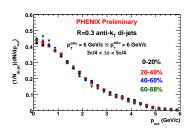
pp d+Au Cu+Cu

utlook

VTX sPHENIX


Acknowledgements


PHENIX $\Delta \phi$ RMS, STAR $p_{\text{out}} = k_{\text{T}}$ comparison



D.V. Perepelitsa

sPHENIX

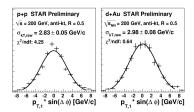


Figure 3. Distributions of k_{Traw} for p+p, d+Au $(10 < p_{T,2} < 20 \text{ GeV}/c)$.